

Main Aspects of Gasturbine Generator Integration in Electric Aircraft on Example of ESTOLAS

Oleksiy Antoshkiv

General Characteristic of ESTOLAS

- The plane is built according to "all wing" scheme with the tail section of extended surface and pilot-passenger cabin in the front
- The main part of the aircraft is the diskshaped centerplane with the central tunnel where the cargo cabin and propeller system are located.

- An efficient operation of ESTOLAS demands many engine points at the aircraft analog to air ship
 - > The power per engine is reduced
 - > The engine efficiency is decreased

Type	Cargo, kg	Engine Points x Power, kW	
LZ 18	11,1	4 x 134	
LZ 127	15	5 x 4189	
CL 160	160	8 x 5882	

Comparison of main parameters and engine points of Zeppelin and Cargolifter airships

Comparison of engines of 50–5000 kW range

> Engines with higher Power show better Specific Power values

10

Problem Definition

ESTOLAS

Propulsion Efficiency

$$\eta_{V} = PropulsionEfficiency = \frac{PropulsionPower}{EffectivePower}$$

$$egin{aligned} egin{aligned} eta_V = rac{2}{2 + rac{\Delta V}{Vo}} \end{aligned}$$

> A Turboprop Engine is required for ESTOLAS

Tilt-Rotor

VTOL/STOL mode

Flight mode

E-Engine-Switch

Electric Engine Integration

Type of Power Unit	Mass, kg	Power, kW	
Gas Turbine	72,00	313,00	
Electric Engine	29,40	74,00	
2xElectric Engines	58,80	148,00	
3xElectric Engines	88,20	222,00	
Piston Engine	66,00	73,50	
3xPistone Engines	198,00	220,50	
GT+3xElectric Engines	160,20	222,00	
GT+2xElectric Engines	130,80	313,00	

Rough comparison of main parameters of electric engines and piston engines

ESTOLAS

ESTOLAS

Electric Engine Integration

Expected system weight reduction due to application of electric propulsion system in ESTOLAS

Future Fuels

Properties of available fuels

Fuel type	Energy	Energy	Storage	Longtime	Climat
	source	density	Handling		impact
Kerosene	Oil, Oilsand	+	/ + I	-	-
GTL, CTL	Cole,		/+/	0	1
Kerosene	Naturalgas	1	1	Coal	
LPG	Oil; Natural	0	Pressure-	- /	-
ASKT	gas	0	tank	0	-
LNG	Natural gas	0	Isothank	1/4/-//	-
BioLNG	Biogas	0	1// 1/10	+	+
Ethanol,	Biomass	N. W.	111-11	1-/	+
Methanol	10	1	4111	0	
Vegetable Oil	Biomass	0 //	1 -2:4-1	3 -	+
		1	Frosen		
BTL Kerosene	Biomass	1+/	1	0	+
BioLNG	Biomass	0	-	0	+
	4	11	Isotank		
LH2	solar	1/+	- //	+	+
		-	Isotank		

Future Fuels

LNG fuel system arrangement

Future Fuels

ASKT fuel system arrangement

ESTOLAS

Main Achievements

Solar Energy Souses

Conclusions

- In the frame of performed investigations an optimal architecture for electric ESTOLAS was proposed
- The analysis shows that the application of electric components (electric engines, generators and batteries) can improve the flight properties of ESTOLAS in the future
- Proposed propulsion system structure on board of ESTOLAS opens new strategy for flight control during the flight, which enables VTOL-operations for the flight vehicles with high payload
- •The perspective architecture allows to reach significant weigh and costs reduction at minimal emissions level
- Electric engines powered by solar energy are environmentally friendly and can ensure a largely carbon-neutral energy supply for aviation
- •The further simulations and tests of main energetic parameters of an electric ESTOLAS are planned

Teams and recourses involved

